Control test and summary settings for the tableby
function.
tableby.control( test = TRUE, total = TRUE, total.pos = c("after", "before"), test.pname = NULL, numeric.simplify = FALSE, cat.simplify = FALSE, cat.droplevels = FALSE, ordered.simplify = FALSE, date.simplify = FALSE, numeric.test = "anova", cat.test = "chisq", ordered.test = "trend", surv.test = "logrank", date.test = "kwt", selectall.test = "notest", test.always = FALSE, numeric.stats = c("Nmiss", "meansd", "range"), cat.stats = c("Nmiss", "countpct"), ordered.stats = c("Nmiss", "countpct"), surv.stats = c("Nmiss", "Nevents", "medSurv"), date.stats = c("Nmiss", "median", "range"), selectall.stats = c("Nmiss", "countpct"), stats.labels = list(), digits = 3L, digits.count = 0L, digits.pct = 1L, digits.p = 3L, format.p = TRUE, digits.n = 0L, conf.level = 0.95, wilcox.correct = FALSE, wilcox.exact = NULL, chisq.correct = FALSE, simulate.p.value = FALSE, B = 2000, times = 1:5, ... )
test | logical, telling |
---|---|
total | logical, telling |
total.pos | One of |
test.pname | character string denoting the p-value column name in |
numeric.simplify, date.simplify | logical, tell |
cat.simplify, ordered.simplify | logical, tell |
cat.droplevels | Should levels be dropped for categorical variables? If set to true, p-values will not be displayed
unless |
numeric.test | name of test for numeric RHS variables in |
cat.test | name of test for categorical variables: chisq, fe (Fisher's Exact) |
ordered.test | name of test for ordered variables: trend |
surv.test | name of test for survival variables: logrank |
date.test | name of test for date variables: kwt |
selectall.test | name of test for date variables: notest |
test.always | Should the test be performed even if one or more by-group has 0 observations? Relevant for kwt and anova. |
numeric.stats, cat.stats, ordered.stats, surv.stats, date.stats, selectall.stats | summary statistics to include for the respective class of RHS variables within the levels of the group LHS variable. |
stats.labels | A named list of labels for all the statistics function names, where the function name is the named element in the list
and the value that goes with it is a string containing the formal name that will be printed in all printed renderings of the output,
e.g., |
digits | Number of decimal places for numeric values. |
digits.count | Number of decimal places for count values. |
digits.pct | Number of decimal places for percents. |
digits.p | Number of decimal places for p-values. |
format.p | Logical, denoting whether to format p-values. See "Details", below. |
digits.n | Number of decimal places for N's in the header. Set it to NA to suppress the N's. |
conf.level | Numeric, denoting what confidence level to use for confidence intervals.
(See, e.g., |
wilcox.correct, wilcox.exact | See |
chisq.correct | logical, correction factor for chisq.test |
simulate.p.value | logical, simulate p-value for categorical tests (fe and chisq) |
B | number of simulations to perform for simulation-based p-value |
times | A vector of times to use for survival summaries. |
... | additional arguments. |
A list with settings to be used within the tableby
function.
All tests can be turned off by setting test
to FALSE.
Otherwise, test are set to default settings in this list, or set explicitly in the formula of tableby
.
If format.p
is FALSE
, digits.p
denotes the number of significant digits shown. The
p-values will be in exponential notation if necessary. If format.p
is TRUE
,
digits.p
will determine the number of digits after the decimal point to show. If the p-value
is less than the resulting number of places, it will be formatted to show so.
Options for statistics are described more thoroughly in the vignette and are listed in tableby.stats
Jason Sinnwell, Beth Atkinson, Ethan Heinzen, Terry Therneau, adapted from SAS Macros written by Paul Novotny and Ryan Lennon
set.seed(100) ## make 3+ categories for Response mdat <- data.frame(Response=c(0,0,0,0,0,1,1,1,1,1), Sex=sample(c("Male", "Female"), 10,replace=TRUE), Age=round(rnorm(10,mean=40, sd=5)), HtIn=round(rnorm(10,mean=65,sd=5))) ## allow default summaries in RHS variables, and pass control args to ## main function, to be picked up with ... when calling tableby.control outResp <- tableby(Response ~ Sex + Age + HtIn, data=mdat, total=FALSE, test=TRUE) outCtl <- tableby(Response ~ Sex + Age + HtIn, data=mdat, control=tableby.control(total=TRUE, cat.simplify=TRUE, cat.stats=c("Nmiss","countpct"),digits=1)) summary(outResp, text=TRUE)#> #> #> | | 0 (N=5) | 1 (N=5) | p value| #> |:------------|:---------------:|:---------------:|-------:| #> |Sex | | | 1.000| #> |- Female | 3 (60.0%) | 3 (60.0%) | | #> |- Male | 2 (40.0%) | 2 (40.0%) | | #> |Age | | | 0.449| #> |- Mean (SD) | 39.400 (3.435) | 40.800 (1.924) | | #> |- Range | 36.000 - 44.000 | 39.000 - 44.000 | | #> |HtIn | | | 0.771| #> |- Mean (SD) | 66.600 (6.504) | 65.600 (3.578) | | #> |- Range | 60.000 - 77.000 | 61.000 - 69.000 | | #>#> #> #> | | 0 (N=5) | 1 (N=5) | Total (N=10) | p value| #> |:------------|:-----------:|:-----------:|:------------:|-------:| #> |Sex | 2 (40.0%) | 2 (40.0%) | 4 (40.0%) | 1.000| #> |Age | | | | 0.449| #> |- Mean (SD) | 39.4 (3.4) | 40.8 (1.9) | 40.1 (2.7) | | #> |- Range | 36.0 - 44.0 | 39.0 - 44.0 | 36.0 - 44.0 | | #> |HtIn | | | | 0.771| #> |- Mean (SD) | 66.6 (6.5) | 65.6 (3.6) | 66.1 (5.0) | | #> |- Range | 60.0 - 77.0 | 61.0 - 69.0 | 60.0 - 77.0 | | #>